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Abstract 

Background:  Gaps in electronic health record (EHR) data collection and the paucity of standardized clinical data ele-
ments (CDEs) captured from electronic and digital data sources have impeded research efforts aimed at understand-
ing the epidemiology and quality of care for opioid use disorder (OUD). We identified existing CDEs and evaluated 
their validity and usability, which is required prior to infrastructure implementation within EHRs.

Methods:  We conducted (a) a systematic literature review of publications in Medline, Embase and the Web of Sci-
ence using a combination of at least one term related to OUD and EHR and (b) an environmental scan of publicly 
available data systems and dictionaries used in national informatics and quality measurement of policy initiatives. 
Opioid-related data elements identified within the environmental scan were compared with related data elements 
contained within nine common health data code systems and each element was graded for alignment with match 
results categorized as “exact”, “partial”, or “none.”

Results:  The literature review identified 5186 articles for title search, of which 75 abstracts were included for review 
and 38 articles were selected for full-text review. Full-text articles yielded 237 CDEs, only 12 (5.06%) of which were 
opioid-specific. The environmental scan identified 379 potential data elements and value sets across 9 data systems 
and libraries, among which only 84 (22%) were opioid-specific. We found substantial variability in the types of clinical 
data elements with limited overlap and no single data system included CDEs across all major data element types such 
as substance use disorder, OUD, medication and mental health. Relative to common health data code systems, few 
data elements had an exact match (< 1%), while 61% had a partial match and 38% had no matches.

Conclusions:  Despite the increasing ubiquity of EHR data standards and national attention placed on the opioid 
epidemic, we found substantial fragmentation in the design and construction of OUD related CDEs and little OUD 
specific CDEs in existing data dictionaries, systems and literature. Given the significant gaps in data collection and 
reporting, future work should leverage existing structured data elements to create standard workflow processes to 
improve OUD data capture in EHR systems.
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Background
The opioid epidemic, which is responsible for nearly 
400,000 overdose deaths since 1999, has received 
increased attention from researchers and policymakers 

as a leading cause of injury-related death in the United 
States [1]. Unfortunately, few evidence-based solutions 
to the epidemic exist due to limited prior attention and 
investments in research infrastructure for a condition 
often stigmatized or marginalized [2]. The passage of the 
Substance Use-Disorder Prevention that Promotes Opi-
oid Recovery and Treatment (SUPPORT) for Patients 
and Communities Act, however, has generated marked 
enthusiasm and support to address gaps in research, 
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surveillance, and care for opioid use disorder (OUD) 
using increasingly available electronic and digital data 
sources such as electronic health records (EHRs) [3]. 
While the National Institute of Health encourages the use 
of common data elements (CDEs) “to improve data qual-
ity and opportunities for comparison and combination 
of data from multiple studies and with electronic health 
records” [4], numerous challenges still exist in identify-
ing and incorporating OUD-specific CDEs into research 
initiatives [5, 6]. Prior work has identified numerous gaps 
in EHRs or data standards that preclude high-quality 
OUD research, including single site-specific definitions 
that cannot be generalized for observational studies or 
surveillance as well as the use of disparate data EHR data 
systems between vendors when capturing and storing 
health data [7, 8]. Additionally, fragmented CDEs that 
are not easily translated across settings or data systems 
that are inherently designed for select types or structured 
or clinically oriented data prevent the effective develop-
ment of quality measurement or surveillance systems [9, 
10]. For example a common National Institutes of Health 
(NIH) CDE is derived from the Timeline Followback 
Method Assessment, which collects information about 
opioid use in the past week [11]. However, this CDE does 
not map to any existing data standard or system which 
are inherently designed for more structured data or hier-
archies of data terms in ontologies not specific to a single 
question.

The creation and inclusion of opioid relevant CDEs in 
clinical data registries and EHRs would both enable and 
improve the quality of substance use disorder research 
and the evaluation of interventions to improve outcomes 
[6]. For example, improving EHR data infrastructure for 
OUD data elements could provide the building blocks 
for future quality measures, performance benchmark-
ing, and answering important research questions, such 
as “how many providers provide naloxone or administer 
buprenorphine for OUD?” or “what proportion of emer-
gency department (ED) patients with OUD have low back 
pain?” [12], which would improve our understanding of 
the scope of this issue, as well as evaluate interventions. 
We therefore aimed to identify and categorize existing 
CDEs in relation to OUD and assess their alignment with 
common data standards, which is required prior to infra-
structure implementation.

Methods
This study included the parallel conduct of an environ-
mental scan and a literature review. The former was 
designed to capture data elements and concepts used in 
national informatics and quality measurement initiatives, 
while the latter encompassed CDEs published in peer-
reviewed literature. This comprehensive study design was 

based on the current structure and availability of relevant 
data, with input from a multidisciplinary committee 
of experts, and allowed for inclusion of a diverse set of 
data standards ranging from diagnostic codes originally 
intended for billing purposes to EHR standards for clini-
cal information. The Yale University Institutional Review 
Board (IRB) determined that review and approval were 
not required, as the project did not involve human sub-
jects research.

Environmental scan
We conducted an environmental scan of publicly avail-
able data systems, data elements and data dictionaries 
used in several public and private initiatives to identify 
OUD data elements suitable for capture in the EHR. The 
environmental scan was conducted in concert with guid-
ance of the Centers for Medicare and Medicaid Service’s 
MMS Blueprint, a guidance document for quality meas-
ure development in which environmental scans are simi-
larly applied to diverse data types for similar purposes to 
this work [13].

Data sources
We searched publicly available data system and diction-
ary websites for opioid-related data sets and elements 
including the Value Set Authority Center (VSAC) [14], 
Centers for Medicare and Medicaid (CMS) Data Element 
Library (DEL) [15], National Quality Measures Clear-
inghouse (NQMC) [16], the NIH CDEs [4], the Univer-
sity of Washington Alcohol and Drug Abuse Institute 
(ADAI) Library Instruments [17], the National Human 
Genome Research Institute (NHGRI): PhenX Toolkit [18] 
and the National Institute of Drug Abuse (NIDA) CDEs 
[11]. Each source contains fairly unique CDE informa-
tion including: clinical concepts within the VSAC, qual-
ity measure specific data instruments within the DEL, 
primarily patient reported outcome survey instruments 
within the NIH CDE, human readable data element spec-
ifications within the NQMC, and consensus measure-
ment protocols within PhenX.

Search strategy
For VSAC, CMS DEL, NQMC, NIH CDEs, University 
of Washington ADAI, and PhenX researchers searched 
“opioid,” along with relevant keywords such as heroin, 
buprenorphine, naloxone, Narcan and methadone. We 
found that expanding search terms beyond opioid did not 
return any additional value sets that were not found using 
opioid only. Given the relevance of NIDA CDEs to sub-
stance use disorder [11], we manually reviewed all 204 
CDEs for any referencing opioids.
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Inclusion/exclusion
For the analysis, we included all data elements consid-
ered relevant to OUD research based on a review by 
two research investigators (CM, AT) and any disagree-
ments in relevance were reviewed by a third investiga-
tor (AKV) and resolved by consensus discussion. In 
general, due to limited specificity of CDEs, the process 
was inclusive of most data elements and only data ele-
ments solely specific to another substance use disorder 
such as tobacco or alcohol without any OUD relevance 
were excluded.

Analysis
Opioid-related data elements identified for each data 
system and library were compared with related data 
elements contained within the following common 
health data code systems: Current Procedural Termi-
nology (CPT), International Classification of Diseases, 
9th Revision (ICD9), International Classification of 
Diseases, 10th Revision (ICD10), Systematized Nomen-
clature of Medicine Clinical Terms (SNOMEDCT), 
Logical Observation Identifiers Names and Codes 
(LOINC), National Drug File –Reference Terminol-
ogy (NDFRT), Healthcare Common Procedure Cod-
ing System (HCPCS), Centers for Disease Control and 
Prevention Race and Ethnicity Code Set (CDCREC) 
and RXNORM. Data elements were graded by a study 
investigator, with match results categorized as “exact”, 
“partial”, or “none.” To ensure accuracy, matching was 
reviewed by a second study investigator and any disa-
greements were resolved by a third investigator.

Literature review
For the literature review, we constructed a comprehen-
sive search strategy built upon clinical experience, prior 
systematic reviews in substance use disorder literature, 
and input from a professional librarian.

Sources
We conducted a search of relevant publications in 
Medline and Embase using OVID, as well as the Web 
of Science.

Search strategy
Searches included a combination of at least one term 
related to opioid use disorders and electronic medical 
records. Opioid related search terms included analge-
sics, opioid-related disorders, opiate alkaloids, or types 
of opioids (opioid OR opiate OR heroin OR nalox-
one OR narcan OR evzio OR percocet OR endocet 
OR primlev OR oxycontin OR oxycodone OR roxico-
done OR xtampza OR oxaydo OR buprenorphine OR 

buprenex OR butrans OR probuphine OR suboxone 
OR belbuca). Electronic medical record search terms 
included medical records, EHR OR Electronic Health 
Record* OR Electronic Medical Record* OR Electronic 
Data Element* OR Electronic Phenotype* OR value set 
authority center* OR VSAC OR ontology OR SNOMED 
OR ICD9 OR ICD10 OR data standard* OR HL7 OR 
Health Level 7 OR FHIR OR common data element* 
OR medical record* OR clinical data element*. Search 
terms were similar for Web of Science and adapted for 
their terms/indexes.

Inclusion/exclusion
Using Covidence, we systematically reviewed our 
search results to identify publications for review 
and analysis, the results of which are presented in a 
PRISMA flow chart in Fig.  1. In summary, the search 
returned 5186 references (1070 in Medline, 3653 in 
Embase and 1103 in Web of Science), and after remov-
ing duplicates (n = 157) and articles that did not include 
relevant content related to both opioid use disorders 
and electronic medical records (n = 4954), a total of 75 
full text articles remained for further analysis. Of these, 
37 studies were excluded primarily due to lack of rel-
evant outcomes or non-peer-reviewed publication type 
and a total of 38 studies were included for review and 
analysis.

Fig. 1  PRISMA flow diagram of literature review
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Analysis
We conducted a systematic assessment of included stud-
ies based on expert review, abstraction and curation by 
two study investigators. Each CDE identified in the man-
uscript was abstracted into a standardized data collection 
tool and classified each data element as related to diag-
nosis, medication, patient demographics, or vital signs. 
Given the heterogeneity of underlying studies as well 
as the purpose of this exploratory literature review, no 
meta-analysis was considered necessary or feasible.

Results
Environmental scans of data dictionaries and databases 
on seven publicly available websites identified 379 CDEs, 
including 175 CDEs captured using the search term “opi-
oid” and 204 contained within the NIDA CDEs. Based on 
manual review, only 84 (22%) of all CDEs identified were 
opioid-specific, while 93 (25%) were related to substance 
use disorder (SUD) and 202 (53%) were categorized as 
“other” (Table  1). The majority of opioid-specific CDEs 
were found in VSAC, which focused on intravenous 
drug use, pain medications and urine screening, and 
the Washington ADAI, which included clinical instru-
ments such as the Clinical Opiate Withdrawal Scale and 
Opioid Craving Scale. When comparing 305 CDEs with 
related data elements contained within 9 common health 
data code systems in VSAC (e.g., CPT, ICD10, LOINC, 
etc.) for a combined total of 2745 potential matches, 
61% had a partial match, 38% had no matches and less 
than 1% had an exact match with VSAC data code sys-
tems (Table  2). Overall, we found substantial variability 
in the types of clinical data elements available in each 
major data system with limited overlap (Fig.  2). Many 
CDE groups were dominated by one data category (e.g. 
NQMC) and few capture data elements from a wide vari-
ety of data categories well (e.g. NIDA CDEs). Notably, the 
NQMC included many CDEs specific to pain and quality 
of life but virtually none specific to mental health, which 
is captured by the NIDA CDEs, and no medications 
which are uniquely captured by the CMS DEL. No single 
data system includes CDEs across all major data element 
types such as SUD, OUD, medication and mental health. 

A comprehensive summary of categorized data elements 
is available in Additional file 1: Appendix S1.

The literature review identified 38 articles for analysis 
(Additional file 2: Appendix S2), which described obser-
vational research, expert consensus/review publica-
tions and a limited set of experimental studies. The vast 
majority of studies were not directly reporting CDEs but 
rather included outcomes or cohort definitions that were 
descriptive of a CDE and suitable for consideration for 
future data infrastructure work.

Overall, the literature review identified a total of 237 
CDEs that could potentially be OUD related, of which 
225 (95%) were diagnosis-based and not opioid specific. 
These included descriptions of CDEs for other SUD such 
as alcohol use as well as diagnosis codes for concomi-
tant mental health conditions. No standard or consistent 
diagnostic CDE definitions were used across the stud-
ies further indicating the lack of consensus or standard 
vocabularies for OUD CDEs.

Discussion
This environmental scan and literature review revealed 
several notable gaps in the digital data infrastructure 
necessary for EHRs to support research on OUD. First, 
despite the increasing ubiquity of EHR data standards, 
we found substantial fragmentation in the design and 
construction of OUD-related CDEs. Value sets that 
are posted and curated within the NLM VSAC increas-
ingly represent a centralized set or list of potential CDEs 
that define clinical concepts to support effective and 

Table 1  Opioid specificity of clinical data elements identified in environmental scan

Category Data code systems

VSAC n (%) CMS DEL n (%) NQMC n (%) NIH CDE n (%) ADAI n (%) PhenX n (%) NIDA CDEs n (%) Total n (%)

Opioid specific 27 (36) 9 (100) 1 (3) 12 (63) 24 (67) 0 (0) 11 (5) 84 (22)

SUD nonspecific 16 (22) 0 (0) 0 (0) 2 (11) 12 (33) 2 (100) 61 (30) 93 (25)

Other 31 (42) 0 (0) 34 (97) 5 (26) 0 (0) 0 (0) 132 (65) 202 (53)

Total 74 (100) 9 (100) 35 (100) 19 (100) 36 (100) 2 (100) 204 (100) 379 (100)

Table 2  Summary of VSAC matches by data code system

Data code system Exact n (%) Partial n (%) None n (%) Total n

NIDA CDE 9 (1) 1275 (69) 552 (30) 1836

CMS DEL 0 (0) 59 (73) 22 (27) 81

NQMC 0 (0) 0 (0) 315 (100) 315

NIH CDE 0 (0) 91 (53) 80 (47) 171

ADAI 0 (0) 252 (78) 72 (22) 324

PhenX 0 (0) 14 (78) 4 (22) 18

Total 9 (1) 1691 (61) 1045 (38) 2745
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interoperable health information exchange [19]. How-
ever, the value sets we identified are often limited to a 
single data type or data, which limits use across data 
systems and in turn exacerbates gaps in CDE capture of 
clinical concepts. For example, while diagnostic codes of 
OUD and medication-based value sets that could be used 
to identify OUD are independently present in the VSAC, 
the lack of data integration results in multiple OUD defi-
nitions of poor sensitivity and/or specificity. For OUD 
research initiatives to yield broadly generalizable results, 
future work must either develop validated cross walks 
between data sources (e.g. linking specific SNOMED 
concepts to ICD-10 diagnostic codes) or more likely, 
hybrid definitions that integrate multiple datatypes to 
characterize a clinical concept such as “opioid overdose” 
in a manner that leverages the strengths and accommo-
dates the limitations of disparate electronic data systems 
and ontologies [20–22].

Second, we found little OUD-specific CDEs in exist-
ing data dictionaries and systems. Given high rates of 
co-occurrence, many substance use disorder CDEs are 

OUD-relevant [23], yet few CDEs effectively capture 
OUD-specific data needed for most research initiatives. 
For example, most NIDA CDEs relevant to OUD were 
initially developed or designed to assess SUD more 
broadly or for other substances such as alcohol [23]. 
In addition, while many medication CDEs exist related 
to opioids, few distinguished between opioid prescrib-
ing outside the hospital-based setting and within the 
hospital setting. Even fewer CDEs distinguish between 
the prescribing of opioids for episodic or acute condi-
tions and chronic purposes. This is an important dis-
tinction for the development of future opioid related 
quality measures and research, as the gaps in current 
data infrastructure preclude many important observa-
tional or epidemiological analyses impossible without 
the opioid drug and OUD element specificity needed 
by investigators. Additionally, while we recognize that 
the number of opioid-specific CDEs is limited by the 
pool of data included in this review, when matching the 
NIDA CDEs—which specifically includes data relevant 

Fig. 2  Distribution of clinical data element type by data system
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to substance use—there were still very few (n = 11) data 
elements specific to opioids.

Third, we found that traditional resource sources such 
as peer-reviewed publications contain few CDEs ready 
to use for existing data systems. Most research regard-
ing structured data and patient-reported outcomes 
has utilized non-electronic data sources such as chart 
review or surveys, or low-fidelity sources such as insur-
ance claims, and has also acknowledged notable limita-
tions in data definitions due to the paucity of standard 
CDEs and definitions. Future data infrastructure efforts 
will need to rely on non-traditional data sources to 
identify CDEs and federal and state informatics initia-
tives to identify standards and be flexible to adapt non-
electronic tools to electronic applications [24].

Conclusions
Despite the increasing ubiquity of EHR data standards, 
we found substantial fragmentation in the design and 
construction of OUD related CDEs and little OUD spe-
cific CDEs in existing data dictionaries, systems and lit-
erature. Future work should leverage existing structured 
data elements to create standard workflow processes to 
improve OUD data capture in EHR systems.
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